3.1.15 \(\int \frac {\tan (d+e x)}{(a+b \cot (d+e x)+c \cot ^2(d+e x))^{3/2}} \, dx\) [15]

Optimal. Leaf size=749 \[ \frac {\tanh ^{-1}\left (\frac {2 a+b \cot (d+e x)}{2 \sqrt {a} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{a^{3/2} e}+\frac {\sqrt {2 a-2 c-\sqrt {a^2+b^2-2 a c+c^2}} \sqrt {a^2-b^2-2 a c+c^2+(a-c) \sqrt {a^2+b^2-2 a c+c^2}} \tanh ^{-1}\left (\frac {b^2-(a-c) \left (a-c+\sqrt {a^2+b^2-2 a c+c^2}\right )-b \left (2 a-2 c-\sqrt {a^2+b^2-2 a c+c^2}\right ) \cot (d+e x)}{\sqrt {2} \sqrt {2 a-2 c-\sqrt {a^2+b^2-2 a c+c^2}} \sqrt {a^2-b^2-2 a c+c^2+(a-c) \sqrt {a^2+b^2-2 a c+c^2}} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{\sqrt {2} \left (a^2+b^2-2 a c+c^2\right )^{3/2} e}-\frac {\sqrt {2 a-2 c+\sqrt {a^2+b^2-2 a c+c^2}} \sqrt {a^2-b^2-2 a c+c^2-(a-c) \sqrt {a^2+b^2-2 a c+c^2}} \tanh ^{-1}\left (\frac {b^2-(a-c) \left (a-c-\sqrt {a^2+b^2-2 a c+c^2}\right )-b \left (2 a-2 c+\sqrt {a^2+b^2-2 a c+c^2}\right ) \cot (d+e x)}{\sqrt {2} \sqrt {2 a-2 c+\sqrt {a^2+b^2-2 a c+c^2}} \sqrt {a^2-b^2-2 a c+c^2-(a-c) \sqrt {a^2+b^2-2 a c+c^2}} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{\sqrt {2} \left (a^2+b^2-2 a c+c^2\right )^{3/2} e}-\frac {2 \left (b^2-2 a c+b c \cot (d+e x)\right )}{a \left (b^2-4 a c\right ) e \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}+\frac {2 \left (a \left (b^2-2 (a-c) c\right )+b c (a+c) \cot (d+e x)\right )}{\left (b^2+(a-c)^2\right ) \left (b^2-4 a c\right ) e \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}} \]

[Out]

arctanh(1/2*(2*a+b*cot(e*x+d))/a^(1/2)/(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(1/2))/a^(3/2)/e-2*(b^2-2*a*c+b*c*cot(e
*x+d))/a/(-4*a*c+b^2)/e/(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(1/2)+2*(a*(b^2-2*(a-c)*c)+b*c*(a+c)*cot(e*x+d))/(b^2+
(a-c)^2)/(-4*a*c+b^2)/e/(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(1/2)-1/2*arctanh(1/2*(b^2-(a-c)*(a-c-(a^2-2*a*c+b^2+c
^2)^(1/2))-b*cot(e*x+d)*(2*a-2*c+(a^2-2*a*c+b^2+c^2)^(1/2)))*2^(1/2)/(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(1/2)/(2*
a-2*c+(a^2-2*a*c+b^2+c^2)^(1/2))^(1/2)/(a^2-b^2-2*a*c+c^2-(a-c)*(a^2-2*a*c+b^2+c^2)^(1/2))^(1/2))*(2*a-2*c+(a^
2-2*a*c+b^2+c^2)^(1/2))^(1/2)*(a^2-b^2-2*a*c+c^2-(a-c)*(a^2-2*a*c+b^2+c^2)^(1/2))^(1/2)/(a^2-2*a*c+b^2+c^2)^(3
/2)/e*2^(1/2)+1/2*arctanh(1/2*(b^2-b*cot(e*x+d)*(2*a-2*c-(a^2-2*a*c+b^2+c^2)^(1/2))-(a-c)*(a-c+(a^2-2*a*c+b^2+
c^2)^(1/2)))*2^(1/2)/(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(1/2)/(2*a-2*c-(a^2-2*a*c+b^2+c^2)^(1/2))^(1/2)/(a^2-b^2-
2*a*c+c^2+(a-c)*(a^2-2*a*c+b^2+c^2)^(1/2))^(1/2))*(2*a-2*c-(a^2-2*a*c+b^2+c^2)^(1/2))^(1/2)*(a^2-b^2-2*a*c+c^2
+(a-c)*(a^2-2*a*c+b^2+c^2)^(1/2))^(1/2)/(a^2-2*a*c+b^2+c^2)^(3/2)/e*2^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 3.40, antiderivative size = 749, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 10, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.323, Rules used = {3782, 6857, 754, 12, 738, 212, 1032, 1050, 1044, 214} \begin {gather*} \frac {\tanh ^{-1}\left (\frac {2 a+b \cot (d+e x)}{2 \sqrt {a} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{a^{3/2} e}+\frac {\sqrt {-\sqrt {a^2-2 a c+b^2+c^2}+2 a-2 c} \sqrt {(a-c) \sqrt {a^2-2 a c+b^2+c^2}+a^2-2 a c-b^2+c^2} \tanh ^{-1}\left (\frac {-b \left (-\sqrt {a^2-2 a c+b^2+c^2}+2 a-2 c\right ) \cot (d+e x)-(a-c) \left (\sqrt {a^2-2 a c+b^2+c^2}+a-c\right )+b^2}{\sqrt {2} \sqrt {-\sqrt {a^2-2 a c+b^2+c^2}+2 a-2 c} \sqrt {(a-c) \sqrt {a^2-2 a c+b^2+c^2}+a^2-2 a c-b^2+c^2} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{\sqrt {2} e \left (a^2-2 a c+b^2+c^2\right )^{3/2}}-\frac {\sqrt {\sqrt {a^2-2 a c+b^2+c^2}+2 a-2 c} \sqrt {-(a-c) \sqrt {a^2-2 a c+b^2+c^2}+a^2-2 a c-b^2+c^2} \tanh ^{-1}\left (\frac {-b \left (\sqrt {a^2-2 a c+b^2+c^2}+2 a-2 c\right ) \cot (d+e x)-(a-c) \left (-\sqrt {a^2-2 a c+b^2+c^2}+a-c\right )+b^2}{\sqrt {2} \sqrt {\sqrt {a^2-2 a c+b^2+c^2}+2 a-2 c} \sqrt {-(a-c) \sqrt {a^2-2 a c+b^2+c^2}+a^2-2 a c-b^2+c^2} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{\sqrt {2} e \left (a^2-2 a c+b^2+c^2\right )^{3/2}}-\frac {2 \left (-2 a c+b^2+b c \cot (d+e x)\right )}{a e \left (b^2-4 a c\right ) \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}+\frac {2 \left (a \left (b^2-2 c (a-c)\right )+b c (a+c) \cot (d+e x)\right )}{e \left ((a-c)^2+b^2\right ) \left (b^2-4 a c\right ) \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Tan[d + e*x]/(a + b*Cot[d + e*x] + c*Cot[d + e*x]^2)^(3/2),x]

[Out]

ArcTanh[(2*a + b*Cot[d + e*x])/(2*Sqrt[a]*Sqrt[a + b*Cot[d + e*x] + c*Cot[d + e*x]^2])]/(a^(3/2)*e) + (Sqrt[2*
a - 2*c - Sqrt[a^2 + b^2 - 2*a*c + c^2]]*Sqrt[a^2 - b^2 - 2*a*c + c^2 + (a - c)*Sqrt[a^2 + b^2 - 2*a*c + c^2]]
*ArcTanh[(b^2 - (a - c)*(a - c + Sqrt[a^2 + b^2 - 2*a*c + c^2]) - b*(2*a - 2*c - Sqrt[a^2 + b^2 - 2*a*c + c^2]
)*Cot[d + e*x])/(Sqrt[2]*Sqrt[2*a - 2*c - Sqrt[a^2 + b^2 - 2*a*c + c^2]]*Sqrt[a^2 - b^2 - 2*a*c + c^2 + (a - c
)*Sqrt[a^2 + b^2 - 2*a*c + c^2]]*Sqrt[a + b*Cot[d + e*x] + c*Cot[d + e*x]^2])])/(Sqrt[2]*(a^2 + b^2 - 2*a*c +
c^2)^(3/2)*e) - (Sqrt[2*a - 2*c + Sqrt[a^2 + b^2 - 2*a*c + c^2]]*Sqrt[a^2 - b^2 - 2*a*c + c^2 - (a - c)*Sqrt[a
^2 + b^2 - 2*a*c + c^2]]*ArcTanh[(b^2 - (a - c)*(a - c - Sqrt[a^2 + b^2 - 2*a*c + c^2]) - b*(2*a - 2*c + Sqrt[
a^2 + b^2 - 2*a*c + c^2])*Cot[d + e*x])/(Sqrt[2]*Sqrt[2*a - 2*c + Sqrt[a^2 + b^2 - 2*a*c + c^2]]*Sqrt[a^2 - b^
2 - 2*a*c + c^2 - (a - c)*Sqrt[a^2 + b^2 - 2*a*c + c^2]]*Sqrt[a + b*Cot[d + e*x] + c*Cot[d + e*x]^2])])/(Sqrt[
2]*(a^2 + b^2 - 2*a*c + c^2)^(3/2)*e) - (2*(b^2 - 2*a*c + b*c*Cot[d + e*x]))/(a*(b^2 - 4*a*c)*e*Sqrt[a + b*Cot
[d + e*x] + c*Cot[d + e*x]^2]) + (2*(a*(b^2 - 2*(a - c)*c) + b*c*(a + c)*Cot[d + e*x]))/((b^2 + (a - c)^2)*(b^
2 - 4*a*c)*e*Sqrt[a + b*Cot[d + e*x] + c*Cot[d + e*x]^2])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 738

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 754

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^(m + 1)*(b
*c*d - b^2*e + 2*a*c*e + c*(2*c*d - b*e)*x)*((a + b*x + c*x^2)^(p + 1)/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e +
 a*e^2))), x] + Dist[1/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^m*Simp[b*c*d*e*(2*p - m
+ 2) + b^2*e^2*(m + p + 2) - 2*c^2*d^2*(2*p + 3) - 2*a*c*e^2*(m + 2*p + 3) - c*e*(2*c*d - b*e)*(m + 2*p + 4)*x
, x]*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b
*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && LtQ[p, -1] && IntQuadraticQ[a, b, c, d, e, m, p, x]

Rule 1032

Int[((g_.) + (h_.)*(x_))*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> Simp
[(a + b*x + c*x^2)^(p + 1)*((d + f*x^2)^(q + 1)/((b^2 - 4*a*c)*(b^2*d*f + (c*d - a*f)^2)*(p + 1)))*((g*c)*((-b
)*(c*d + a*f)) + (g*b - a*h)*(2*c^2*d + b^2*f - c*(2*a*f)) + c*(g*(2*c^2*d + b^2*f - c*(2*a*f)) - h*(b*c*d + a
*b*f))*x), x] + Dist[1/((b^2 - 4*a*c)*(b^2*d*f + (c*d - a*f)^2)*(p + 1)), Int[(a + b*x + c*x^2)^(p + 1)*(d + f
*x^2)^q*Simp[(b*h - 2*g*c)*((c*d - a*f)^2 - (b*d)*((-b)*f))*(p + 1) + (b^2*(g*f) - b*(h*c*d + a*h*f) + 2*(g*c*
(c*d - a*f)))*(a*f*(p + 1) - c*d*(p + 2)) - (2*f*((g*c)*((-b)*(c*d + a*f)) + (g*b - a*h)*(2*c^2*d + b^2*f - c*
(2*a*f)))*(p + q + 2) - (b^2*(g*f) - b*(h*c*d + a*h*f) + 2*(g*c*(c*d - a*f)))*(b*f*(p + 1)))*x - c*f*(b^2*(g*f
) - b*(h*c*d + a*h*f) + 2*(g*c*(c*d - a*f)))*(2*p + 2*q + 5)*x^2, x], x], x] /; FreeQ[{a, b, c, d, f, g, h, q}
, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && NeQ[b^2*d*f + (c*d - a*f)^2, 0] &&  !( !IntegerQ[p] && ILtQ[q, -1
])

Rule 1044

Int[((g_) + (h_.)*(x_))/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> Dist[-2*
a*g*h, Subst[Int[1/Simp[2*a^2*g*h*c + a*e*x^2, x], x], x, Simp[a*h - g*c*x, x]/Sqrt[d + e*x + f*x^2]], x] /; F
reeQ[{a, c, d, e, f, g, h}, x] && EqQ[a*h^2*e + 2*g*h*(c*d - a*f) - g^2*c*e, 0]

Rule 1050

Int[((g_.) + (h_.)*(x_))/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> With[{q
 = Rt[(c*d - a*f)^2 + a*c*e^2, 2]}, Dist[1/(2*q), Int[Simp[(-a)*h*e - g*(c*d - a*f - q) + (h*(c*d - a*f + q) -
 g*c*e)*x, x]/((a + c*x^2)*Sqrt[d + e*x + f*x^2]), x], x] - Dist[1/(2*q), Int[Simp[(-a)*h*e - g*(c*d - a*f + q
) + (h*(c*d - a*f - q) - g*c*e)*x, x]/((a + c*x^2)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, c, d, e, f, g,
 h}, x] && NeQ[e^2 - 4*d*f, 0] && NegQ[(-a)*c]

Rule 3782

Int[cot[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + (b_.)*(cot[(d_.) + (e_.)*(x_)]*(f_.))^(n_.) + (c_.)*(cot[(d_.) + (e
_.)*(x_)]*(f_.))^(n2_.))^(p_), x_Symbol] :> Dist[-f/e, Subst[Int[(x/f)^m*((a + b*x^n + c*x^(2*n))^p/(f^2 + x^2
)), x], x, f*Cot[d + e*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0]

Rule 6857

Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
 /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {\tan (d+e x)}{\left (a+b \cot (d+e x)+c \cot ^2(d+e x)\right )^{3/2}} \, dx &=-\frac {\text {Subst}\left (\int \frac {1}{x \left (1+x^2\right ) \left (a+b x+c x^2\right )^{3/2}} \, dx,x,\cot (d+e x)\right )}{e}\\ &=-\frac {\text {Subst}\left (\int \left (\frac {1}{x \left (a+b x+c x^2\right )^{3/2}}-\frac {x}{\left (1+x^2\right ) \left (a+b x+c x^2\right )^{3/2}}\right ) \, dx,x,\cot (d+e x)\right )}{e}\\ &=-\frac {\text {Subst}\left (\int \frac {1}{x \left (a+b x+c x^2\right )^{3/2}} \, dx,x,\cot (d+e x)\right )}{e}+\frac {\text {Subst}\left (\int \frac {x}{\left (1+x^2\right ) \left (a+b x+c x^2\right )^{3/2}} \, dx,x,\cot (d+e x)\right )}{e}\\ &=-\frac {2 \left (b^2-2 a c+b c \cot (d+e x)\right )}{a \left (b^2-4 a c\right ) e \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}+\frac {2 \left (a \left (b^2-2 (a-c) c\right )+b c (a+c) \cot (d+e x)\right )}{\left (b^2+(a-c)^2\right ) \left (b^2-4 a c\right ) e \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}+\frac {2 \text {Subst}\left (\int \frac {-\frac {b^2}{2}+2 a c}{x \sqrt {a+b x+c x^2}} \, dx,x,\cot (d+e x)\right )}{a \left (b^2-4 a c\right ) e}-\frac {2 \text {Subst}\left (\int \frac {-\frac {1}{2} b \left (b^2-4 a c\right )-\frac {1}{2} (a-c) \left (b^2-4 a c\right ) x}{\left (1+x^2\right ) \sqrt {a+b x+c x^2}} \, dx,x,\cot (d+e x)\right )}{\left (b^2+(a-c)^2\right ) \left (b^2-4 a c\right ) e}\\ &=-\frac {2 \left (b^2-2 a c+b c \cot (d+e x)\right )}{a \left (b^2-4 a c\right ) e \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}+\frac {2 \left (a \left (b^2-2 (a-c) c\right )+b c (a+c) \cot (d+e x)\right )}{\left (b^2+(a-c)^2\right ) \left (b^2-4 a c\right ) e \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}-\frac {\text {Subst}\left (\int \frac {1}{x \sqrt {a+b x+c x^2}} \, dx,x,\cot (d+e x)\right )}{a e}+\frac {\text {Subst}\left (\int \frac {\frac {1}{2} b \left (b^2-4 a c\right ) \left (2 a-2 c+\sqrt {a^2+b^2-2 a c+c^2}\right )+\frac {1}{2} \left (b^2-4 a c\right ) \left (b^2-(a-c) \left (a-c-\sqrt {a^2+b^2-2 a c+c^2}\right )\right ) x}{\left (1+x^2\right ) \sqrt {a+b x+c x^2}} \, dx,x,\cot (d+e x)\right )}{\left (b^2-4 a c\right ) \left (a^2+b^2-2 a c+c^2\right )^{3/2} e}-\frac {\text {Subst}\left (\int \frac {\frac {1}{2} b \left (b^2-4 a c\right ) \left (2 a-2 c-\sqrt {a^2+b^2-2 a c+c^2}\right )+\frac {1}{2} \left (b^2-4 a c\right ) \left (b^2-(a-c) \left (a-c+\sqrt {a^2+b^2-2 a c+c^2}\right )\right ) x}{\left (1+x^2\right ) \sqrt {a+b x+c x^2}} \, dx,x,\cot (d+e x)\right )}{\left (b^2-4 a c\right ) \left (a^2+b^2-2 a c+c^2\right )^{3/2} e}\\ &=-\frac {2 \left (b^2-2 a c+b c \cot (d+e x)\right )}{a \left (b^2-4 a c\right ) e \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}+\frac {2 \left (a \left (b^2-2 (a-c) c\right )+b c (a+c) \cot (d+e x)\right )}{\left (b^2+(a-c)^2\right ) \left (b^2-4 a c\right ) e \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}+\frac {2 \text {Subst}\left (\int \frac {1}{4 a-x^2} \, dx,x,\frac {2 a+b \cot (d+e x)}{\sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{a e}-\frac {\left (b \left (b^2-4 a c\right ) \left (2 a-2 c+\sqrt {a^2+b^2-2 a c+c^2}\right ) \left (b^2-(a-c) \left (a-c-\sqrt {a^2+b^2-2 a c+c^2}\right )\right )\right ) \text {Subst}\left (\int \frac {1}{\frac {1}{2} b \left (b^2-4 a c\right )^2 \left (2 a-2 c+\sqrt {a^2+b^2-2 a c+c^2}\right ) \left (b^2-(a-c) \left (a-c-\sqrt {a^2+b^2-2 a c+c^2}\right )\right )+b x^2} \, dx,x,\frac {\frac {1}{2} \left (b^2-4 a c\right ) \left (b^2-(a-c) \left (a-c-\sqrt {a^2+b^2-2 a c+c^2}\right )\right )-\frac {1}{2} b \left (b^2-4 a c\right ) \left (2 a-2 c+\sqrt {a^2+b^2-2 a c+c^2}\right ) \cot (d+e x)}{\sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{2 \left (a^2+b^2-2 a c+c^2\right )^{3/2} e}+\frac {\left (b \left (b^2-4 a c\right ) \left (2 a-2 c-\sqrt {a^2+b^2-2 a c+c^2}\right ) \left (b^2-(a-c) \left (a-c+\sqrt {a^2+b^2-2 a c+c^2}\right )\right )\right ) \text {Subst}\left (\int \frac {1}{\frac {1}{2} b \left (b^2-4 a c\right )^2 \left (2 a-2 c-\sqrt {a^2+b^2-2 a c+c^2}\right ) \left (b^2-(a-c) \left (a-c+\sqrt {a^2+b^2-2 a c+c^2}\right )\right )+b x^2} \, dx,x,\frac {\frac {1}{2} \left (b^2-4 a c\right ) \left (b^2-(a-c) \left (a-c+\sqrt {a^2+b^2-2 a c+c^2}\right )\right )-\frac {1}{2} b \left (b^2-4 a c\right ) \left (2 a-2 c-\sqrt {a^2+b^2-2 a c+c^2}\right ) \cot (d+e x)}{\sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{2 \left (a^2+b^2-2 a c+c^2\right )^{3/2} e}\\ &=\frac {\tanh ^{-1}\left (\frac {2 a+b \cot (d+e x)}{2 \sqrt {a} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{a^{3/2} e}+\frac {\sqrt {2 a-2 c-\sqrt {a^2+b^2-2 a c+c^2}} \sqrt {a^2-b^2-2 a c+c^2+(a-c) \sqrt {a^2+b^2-2 a c+c^2}} \tanh ^{-1}\left (\frac {b^2-(a-c) \left (a-c+\sqrt {a^2+b^2-2 a c+c^2}\right )-b \left (2 a-2 c-\sqrt {a^2+b^2-2 a c+c^2}\right ) \cot (d+e x)}{\sqrt {2} \sqrt {2 a-2 c-\sqrt {a^2+b^2-2 a c+c^2}} \sqrt {a^2-b^2-2 a c+c^2+(a-c) \sqrt {a^2+b^2-2 a c+c^2}} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{\sqrt {2} \left (a^2+b^2-2 a c+c^2\right )^{3/2} e}-\frac {\sqrt {2 a-2 c+\sqrt {a^2+b^2-2 a c+c^2}} \sqrt {a^2-b^2+c \left (c+\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c+\sqrt {a^2+b^2-2 a c+c^2}\right )} \tanh ^{-1}\left (\frac {b^2-(a-c) \left (a-c-\sqrt {a^2+b^2-2 a c+c^2}\right )-b \left (2 a-2 c+\sqrt {a^2+b^2-2 a c+c^2}\right ) \cot (d+e x)}{\sqrt {2} \sqrt {2 a-2 c+\sqrt {a^2+b^2-2 a c+c^2}} \sqrt {a^2-b^2-2 a c+c^2-(a-c) \sqrt {a^2+b^2-2 a c+c^2}} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{\sqrt {2} \left (a^2+b^2-2 a c+c^2\right )^{3/2} e}-\frac {2 \left (b^2-2 a c+b c \cot (d+e x)\right )}{a \left (b^2-4 a c\right ) e \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}+\frac {2 \left (a \left (b^2-2 (a-c) c\right )+b c (a+c) \cot (d+e x)\right )}{\left (b^2+(a-c)^2\right ) \left (b^2-4 a c\right ) e \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.
time = 39.44, size = 558961, normalized size = 746.28 \begin {gather*} \text {Result too large to show} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[Tan[d + e*x]/(a + b*Cot[d + e*x] + c*Cot[d + e*x]^2)^(3/2),x]

[Out]

Result too large to show

________________________________________________________________________________________

Maple [B] result has leaf size over 500,000. Avoiding possible recursion issues.
time = 61.68, size = 21338039, normalized size = 28488.70

method result size
default \(\text {Expression too large to display}\) \(21338039\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(e*x+d)/(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(3/2),x,method=_RETURNVERBOSE)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(e*x+d)/(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(3/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(e*x+d)/(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(3/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\tan {\left (d + e x \right )}}{\left (a + b \cot {\left (d + e x \right )} + c \cot ^{2}{\left (d + e x \right )}\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(e*x+d)/(a+b*cot(e*x+d)+c*cot(e*x+d)**2)**(3/2),x)

[Out]

Integral(tan(d + e*x)/(a + b*cot(d + e*x) + c*cot(d + e*x)**2)**(3/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(e*x+d)/(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(3/2),x, algorithm="giac")

[Out]

sage0*x

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\mathrm {tan}\left (d+e\,x\right )}{{\left (c\,{\mathrm {cot}\left (d+e\,x\right )}^2+b\,\mathrm {cot}\left (d+e\,x\right )+a\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d + e*x)/(a + b*cot(d + e*x) + c*cot(d + e*x)^2)^(3/2),x)

[Out]

int(tan(d + e*x)/(a + b*cot(d + e*x) + c*cot(d + e*x)^2)^(3/2), x)

________________________________________________________________________________________